Email Print Share
May 13, 2020

Ultra-precise, mind-controlled prosthetic hand for amputees

In a major advance in mind-controlled prosthetics for amputees, University of Michigan researchers have tapped faint, latent signals from arm nerves and amplified them to enable real-time, intuitive, finger-level control of a robotic hand. To achieve this, the researchers developed a way to tame temperamental nerve endings, separate thick nerve bundles into smaller fibers that enable more precise control, and amplify the signals coming through those nerves. The approach involves tiny muscle grafts and machine learning algorithms borrowed from the brain-machine interface field. The research was support in part by a grant from the NSF Graduate Research Fellowship Program.

Credit: University of Michigan Engineering


Images and other media in the National Science Foundation Multimedia Gallery are available for use in print and electronic material by NSF employees, members of the media, university staff, teachers and the general public. All media in the gallery are intended for personal, educational and nonprofit/non-commercial use only.

Videos credited to the National Science Foundation, an agency of the U.S. Government, may be distributed freely. However, some materials within the videos may be copyrighted. If you would like to use portions of NSF-produced programs in another product, please contact the Video Team in the Office of Legislative and Public Affairs at the National Science Foundation.

Additional information about general usage can be found in Conditions.